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This paper considers the capillary drainage of a thin annular film on the inside or
outside of a circular cylinder of radius a. A film of uniform thickness and axial length
greater than πa suffers a Rayleigh instability and evolves to form an axisymmetric
structure in which the film thickness varies with axial distance. The fluid is gathered
into collars, having axial length 2πa, and shorter lobes; the pressure within each
collar or lobe is spatially uniform and adjacent collars and lobes are separated by
thin necks. We examine numerically the evolution of this structure and demonstrate
that, for sufficiently short cylinders, lobes drain into collars as described by Hammond
(J. Fluid Mech. vol. 137, 1983, p. 363). For longer cylinder lengths we find that, in
spite of the energetic advantage, neighbouring collars do not drain into one another,
and that the neck region between adjacent collars is governed by a similarity solution
of the thin-film equation having axial length that varies as t−1/2 after time t , and film
thickness that varies as t−1, which is different from that found by Jones & Wilson
(J. Fluid Mech. vol. 87, 1978, p. 263).

We also find a new phenomenon: a collar can spontaneously and episodically
translate back and forth along the cylinder, on each occasion consuming the lobe
ahead and leaving a smaller daughter lobe behind. This motion takes place on several
different timescales: the relatively rapid translation is governed by Landau–Levich
equations; the collision with a neighbouring collar is governed by the similarity
equation for the neck regions ahead and behind; and the delay between one episode
of translation and the next is governed via the Landau–Levich equation by a slow
peeling process. Asymptotic results for each of the processes of translation, collision
and peeling are obtained and are compared with a full numerical solution. Each
episode of translation reduces the thickness of the daughter lobe by a factor 0.115,
and successive translations back and forth give rise to a lobe thickness that decays
on average and on very long timescales like t−1/2.

A thin film of fluid trapped beneath a two-dimensional drop sedimenting towards
a rigid horizontal plane is described by the same evolution equation, and analogous
lobe and collar dynamics are found (Lister, Morrison & Rallison, J. Fluid Mech.
vol. 552, 2006, p. 345).

1. Introduction
A liquid film coating the interior or exterior of a sufficiently long cylinder will

redistribute under the action of surface tension so that its thickness varies axially.
Ultimately, such a film may form an occlusive liquid plug in a tube or a large bead
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on the outside of a fibre. There are numerous applications for which a fundamental
understanding of such flows is important, including two-phase flows in porous media
(Olbricht 1996), liquid-lining flows in lung airways (Grotberg & Jensen 2004), coating
flows (Quéré 1999) and technologies such as microfluidics and heat exchangers
(Allen & Hallinan 2001). Thin-film flow on a cylinder can generally be described in
relatively simple terms through a single nonlinear evolution equation derived using
lubrication theory (Oron, Davis & Bankoff 1997) and there is considerable mathe-
matical interest in the PDEs governing this and related problems (e.g. Bertozzi &
Pugh 1998; Bertozzi, Grun & Witelski 2001). They fall into the class of long-wave-
unstable gradient-flow systems that typically exhibit coarsening behaviour of the sort
found in Cahn–Hilliard systems. Here we investigate the long-time evolution of a thin
axisymmetric liquid layer on a cylinder, and show how viscous effects can generate
surprisingly complex dynamics over very long timescales, preventing the system from
coarsening to its expected minimum energy state.

The early- and intermediate-time dynamics of a thin viscous film coating a cylinder
have been widely investigated. A uniform thin film may be deposited on the interior
of a cylinder behind a slowly moving bubble or drop (Bretherton 1961), or on the
exterior of a cylinder by withdrawal from a liquid bath (Quéré 1999). Surface tension
then drives the film towards new configurations with lower surface area via the
Rayleigh instability, at a rate determined by viscous forces. The early-time behaviour
can be described with a linear stability analysis, which reveals the wavelength of
the fastest growing disturbances (Goren 1962). The subsequent nonlinear evolution
is captured using lubrication theory (Hammond 1983), which yields a leading-order
evolution equation (see (2.5) below) that (because the relationship between interfacial
curvature and film thickness is linearized) applies to films both on the inside and
the outside of a cylinder. Typically the film redistributes into annular collars (of
length 2πa, where a is the tube radius) separated by lobes (of length less than 2πa).
Each collar and lobe is a local capillary equilibrium shape. Slow drainage of liquid
from a stationary lobe into a neighbouring stationary collar is controlled by a thin
quasi-steady transition region of the kind identified by Jones & Wilson (1978) and
which arises widely in thin-film problems (e.g. Wu & Weinbaum 1982; Braun & Fitt
2003; Jensen, Chini & King 2004). In relatively short domains, for which there is no
significant collar migration, such drainage persists until the film thins so much that
intermolecular (e.g. van der Waals) forces become important.

Numerous additional effects can influence the dynamics of films coating cylinders.
For thick films, nonlinearities in the relationship between curvature and film thickness
are significant. Films on the interior of a cylinder can form an occlusive liquid plug
(Everett & Haynes 1972), the formation of which can be captured either with a thin-
film equation extended to include exact curvature terms (Gauglitz & Radke 1988)
or with full numerical simulations (e.g. Johnson et al. 1991; Newhouse & Pozrikidis
1992; Hagedorn, Martys & Douglas 2004). Thick films on the exterior of cylinders
can bead up into large drops (Quéré 1999). Weak gravity acting parallel to the
cylinder axis then causes collars, plugs or drops to drift downwards, and intricate
merging dynamics may ensue (Quéré 1990; Trifonov 1992; Kalliadasis & Chang 1994;
Kerchman & Frenkel 1994; Chang & Demekhin 1999; Jensen 2000; Kliakhandler,
Davis & Bankoff 2001). Shear, for example arising in core–annular flow, also leads
to complex collar dynamics (e.g. Aul & Olbricht 1990; Kerchman 1995; Joseph
et al. 1997), although sufficiently strong forcing (either gravity or shear) can suppress
the primary Rayleigh instability in the weakly nonlinear regime (e.g. Frenkel et al.
1987; Halpern & Grotberg 2003). Gravity acting normal to the cylinder, either with
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rotation of the cylinder around its axis at a rate large enough for inertial effects to be
significant (e.g. Moffatt 1977; Thoroddsen & Mahadevan 1997; Hosoi & Mahadevan
1999), or in the absence of rotation (de Bruyn 1997; Jensen 1997; Weidner, Schwartz
& Eres 1997), again leads to axially non-uniform structures that can drift along the
cylinder.

The destabilizing force acting on a thin film coating a cylinder is provided
by pressure gradients associated with azimuthal curvature gradients. Gravity or
intermolecular forces can act on a planar thin film in a similar fashion. The Rayleigh–
Taylor instability of a liquid layer adjacent to a horizontal surface, for example a heavy
layer coating a ceiling (e.g. Yiantsios & Higgins 1989; Newhouse & Pozrikidis 1990)
or a buoyant film trapped beneath a sedimenting drop (e.g. Jones & Wilson 1978;
Yiantsios & Davis 1990; Ascoli, Dandy & Leal 1990; Pozrikidis 1990), is described
(in one spatial dimension) by an evolution equation equivalent to that studied by
Hammond (1983), with pendent drops (for example) being analogous to collars. In
particular, the simulations of Yiantsios & Higgins (1989) provide evidence that a thin
film dripping off a ceiling does not approach its minimum energy state and that its
final state is dependent on the initial conditions; the numerical results in this study did
not describe accurately the evolution of the system over very long times, however. The
rupture of a thin film on a planar surface is conveniently modelled by allowing both
for destabilizing long-range van der Waals forces (attracting the interface to the solid
surface) and stabilizing short-range repulsive forces, so that the breakup of a film into
isolated drops can be modelled without having to deal with contact-line singularities
explicitly (e.g. Sharma & Khanna 1998). In this framework, an individual drop with
small but non-zero contact angle comes into equilibrium with a neighbouring ultra-
thin film of a nearly constant thickness set by a balance between the long-range and
short-range intermolecular forces. Multiple isolated drops on a long domain drift and
merge over long timescales and ultimately the system coarsens to its minimum energy
state (e.g. Mitlin 1993; Glasner & Witelski 2003). Both the Rayleigh–Taylor and
the film-rupture problems offer experimentally accessible opportunities to investigate
long-time pattern formation and coarsening dynamics in two dimensions (e.g. Limat
et al. 1992; Fermigier et al. 1992; Limary & Green 2003).

In this paper we revisit Hammond’s (1983) evolution equation describing the
axisymmetric coating of a cylinder, allowing the film to adjust under the action of
surface tension and viscosity alone. The evolution of this system turns out to be more
intricate than the system described by Glasner & Witelski (2003), because the lobes
between collars are non-uniform and can become arbitrarily thin. High-resolution
finite-difference simulations (adaptive in both space and time) show that, contrary to
expectation, the canonical quasi-steady Jones–Wilson draining flow found between
stationary collars and lobes is not a universal feature in extended domains over very
long times. Instead, new unsteady draining regimes emerge, associated with episodes
of axial translation of collars along the cylinder in which the lobe ahead is consumed
and a smaller daughter lobe left behind. Each episode ends with a collision with a
neighbouring collar and a new episode is initiated on a much longer timescale by the
completion of a slow peeling process from the daughter lobe. A foretaste of some of
this dynamics is provided in figure 1.

The problem is formally defined and described in § 2, and illustrative numerical
results are presented in § 3. These results motivate asymptotic analyses of the special
case of adjacent stationary collars in § 4 and of the generic processes of translation,
collision and peeling in § § 5–7. Among the surprises are that colliding collars do not
coalesce, despite the energetic advantage of doing so, and that this dissipative system
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Figure 1. The evolution of a thin film of thickness h on a cylinder of length 5π. The details
of the calculation and the non-dimensionalization are given in § § 2 and 3. (a) Time t = 102

(dashed), 103, 104 and 106 (bold); (b) t = 2.1×106 (dashed), 2.18, 2.2, 2.22 and 2.3×106 (bold).
Between t = 102 and 105 the central collar slides to the left from 2 < z/π < 4 into 1 <z/π < 3,
consuming the lobe ahead of it and leaving a smaller daughter lobe behind in 3 <z/π < 4.
Between t =2.1 × 106 and 2.3 × 106, the collar slides back to the right leaving an even smaller
daughter lobe in 1 < z/π < 2. The episodic sliding motion is halted by collisions with the collars
pinned at the ends of the domain by the boundary conditions and is reinitiated by a peeling
process that cannot be seen on this scale.
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Figure 2. Definition sketch. A rigid cylinder of radius a is coated by a thin axisymmetric
layer of liquid of viscosity µ, surface tension σ and thickness h(z, t), where z is the axial
coordinate. The length of the domain is L.

can exhibit oscillatory dynamics over very long timescales. The implications for the
asymptotic behaviour of this system, and for related problems, are explored in § § 8
and 9.

The following companion paper (Lister, Morrison & Rallison 2006) describes a
closely related problem in which many similar features arise, namely the evolution of
the film trapped beneath a drop sedimenting towards a rigid horizontal plane.

2. Problem description
2.1. Governing equation

Consider a rigid cylinder of radius a coated by a thin axisymmetric layer of liquid of
viscosity µ and thickness h(z, t), where z is the axial coordinate (figure 2). We assume
that h � a and hz � 1. It follows that the interfacial curvature

κ =
1

R
(
1 + R2

z

)1/2
− Rzz(

1 + R2
z

)3/2
, (2.1)



Collars and lobes 315

where R(z, t) = a + h(z, t), can be approximated by

κ =
1

a
− h

a2
− hzz. (2.2)

We assume that gravity is negligible and that both the external pressure and the
surface tension σ are uniform. The flow in the film is then driven solely by the
capillary pressure gradient

pz = σκz = −σ (a−2h + hzz)z. (2.3)

We assume that inertia is negligible and, using h � a and hz � 1 again, make the
usual lubrication approximations to obtain

ht +
σ

3µ
(h3(a−2h + hzz)z)z = 0. (2.4)

Equation (2.4) also describes the evolution of a thin layer of fluid coating the inside
of a hollow cylinder of internal radius a (Hammond 1983). In this case R = a − h,
the interfacial curvature is approximated by κ = a−1 + a−2h + hzz and the capillary
pressure is −σκz. The dynamical effects of a second fluid in the centre of the cylinder
are negligible provided its viscosity is much less than µa/h. Differences between
the evolution of internal and external coating layers only appear if the small O(h2

z)
correction terms are retained in the curvature.

By scaling h with a typical initial thickness ĥ, z with a, p with σ ĥ/a2 and t with
µa4/(σ ĥ3), we obtain the dimensionless evolution equation

ht + 1
3
(h3(hz + hzzz))z = 0. (2.5)

This paper describes the long-time evolution of solutions of (2.5). Numerical
calculations were performed on a finite domain 0 � z � L subject to the symmetry
boundary conditions

hz = hzzz = 0 at z = 0, L. (2.6)

2.2. Collars, lobes and energy

It is straightforward to show from (2.5) that a uniform film of thickness h0 is linearly
unstable on an infinite domain to wavenumbers k < 1 with a maximum growth rate
h3

0/12 at k =2−1/2. This reflects the Rayleigh instability, which drives the film toward a
state of minimum surface energy and hence minimum surface area. By expanding the
relevant axisymmetric integrals to O(ĥ2/a2), it can be shown that, on a finite domain
with boundary conditions such as (2.6) or periodicity, the problem of minimizing
surface area subject to the constraint of constant volume is equivalent in the thin-film
approximation to

minimize E ≡ 1

2

∫ L

0

(
h2

z − h2
)
dz subject to

∫ L

0

h dz = const. (2.7)

An equivalent form is obtained by Yiantsios & Higgins (1989). Under the same boun-
dary conditions, (2.5) can be used to show that the rate of dissipation Φ = −dE/dt is
given by

Φ =
1

3

∫ L

0

h3(hz + hzzz)
2 dz � 0. (2.8)

There exist equilibrium configurations of the film corresponding to solutions in
which the pressure

p = −(h + hzz) (2.9)
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is a constant, P , and hence

h = A cos(z − z0) − P, (2.10)

where A � 0, and A and z0 are constants. The case P > −A corresponds to a finite drop
of fluid having the form of an annular ring of length � = 2 cos−1(P/A) < 2π, which
meets the cylinder at a non-zero contact angle. We call this structure a lobe. The case
P = −A gives a finite drop of length � = 2π, which meets the cylinder tangentially;
we call this a collar. (The case P < −A describes a neutrally stable perturbation to a
uniform film, but will not be relevant to the subsequent discussion.) Strictly speaking,
these collar and lobe solutions have zero film thickness at their edges and such
contact points could not move under (2.5) (see, for example, King & Bowen 2001 and
references therein). For our initial conditions (with h > 0 at t =0) the film thickness
remains everywhere non-zero for all times and we shall use the terms collar and lobe
more loosely to refer to local solutions given at leading order by (2.10) which match
onto regions of much smaller, but non-zero, thickness at their edges. Since, for long
times, we find that almost all of the fluid is gathered into collars that do not merge,
conservation of mass guarantees that under our non-dimensionalization A remains
of order unity for each collar.

Integration gives the volume V and energy E of a collar or lobe as

V = P
[
2 tan

(
1
2
�
)

− �
]
, E = P 2

[
tan

(
1
2
�
)

− 1
2
�
]

= 1
2
PV. (2.11a, b)

Thus, for a collar, P = −V/2π and E = −V 2/4π.
Equation (2.11a, b) shows that the energy of a given volume of fluid is decreased

by transferring fluid from higher-pressure lobes or collars to lower-pressure lobes
or collars, and by increasing the lengths of lobes until they become collars. Such
considerations hint at the possible evolution of (2.5), but prove to be only part of the
story.

The simulations of Hammond (1983) show that the linear instability of a uniform
film develops nonlinearly into a sequence of lobes and collars, with the lobes emptying
slowly into the adjacent lower-pressure collars through a very thin connecting neck
(see for example figure 3a, c below). Hammond analyses the long-time drainage of
a lobe by noting that in a neck h � 1 and thus, at leading order, the neck evolves
quasi-statically. Because the neck region is short, hz � hzzz and (2.5) shows that the
leading-order flux

q = 1
3
h3hzzz (2.12)

through the neck is spatially constant. The neck, with position zn = z0 − π, say, must
match to the lobe with a prescribed small contact angle θ(t) > 0 on one side, and
to the collar (2.10) on the other, and so (2.12) is solved with boundary conditions
h → (zn − z)θ as z − zn → −∞ and h → 1

2
A(z − zn)

2 + O(1) as z − zn → ∞ (where the
limits z − zn → ±∞ are interpreted in the asymptotic sense as meaning the overlap
between inner and outer solutions). As noted by Jones & Wilson (1978), this problem
has a unique solution for which q ∝ θ5 and the minimum neck thickness scales as θ2.
Since, however, the volume of the lobe is proportional to θ and is lost to the collar at
a rate proportional to θ5, it follows that θ ∝ t−1/4 giving a minimum neck thickness
t−1/2.

Hence on Hammond’s analysis if the collars cannot move then the ultimate
configuration as t → ∞ will be one of isolated collars with lobes of zero volume (i.e.
h → 0) between them. If the collars can move then the most energetically favourable
configuration is for the collars to merge to form a single large collar. Somewhat
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surprisingly, we show below that, although collar motion removes fluid from the
lobes faster than the Hammond drainage mechanism, the collars do not merge.

3. The dynamics of collars and lobes
3.1. Numerical scheme

The numerical scheme was designed to address two features of the solutions.
First, in order to maintain resolution of the very small lengthscales of the necks

between the collars and lobes, the scheme uses an adaptive spatial grid in which
the grid point spacing is inversely proportional to 1 + h−1/2. The factor h−1/2 is
chosen to reflect the fact that a neck of thickness h � 1 has lengthscale O(h1/2). As
time-integration proceeds, the grid points are occasionally redistributed using quintic
polynomial interpolation, with new ones added, according to the current variation of
film thickness. Typical calculations begin with 400 points when h = O(1) and require
4000 points for resolution of late times.

Second, the natural timescale for evolution of (2.5) on a lengthscale �z is O(�z4/h3).
With �z ∝ h1/2 this gives a timescale O(h−1) and shows that the evolution of the
thin necks occurs on a very much longer timescale than adjustment of the collars
to their equilibrium shape. In order to examine the long-time evolution of this stiff
system, (2.5) was discretized semi-implicitly using the current values of h3 and the
future values of the pressure p = −(h+hzz). This gives relaxation of the collars to the
correct equilibria even if large time steps are taken to follow the slow evolution of
the necks. Typical calculations used a time step chosen so that h did not change by
more than 0.2 % at any point. Further details of the discretization are given in the
Appendix.

The numerical scheme was verified against independent calculations made using the
NAG routine D02NCF, which is a fully implicit stiff integrator. The scheme described
here was much faster and more stable at late times, owing to the semi-implicit
treatment.

3.2. Numerical results

In order to illustrate the relevance of lobes and collars to the long-time dynamics, we
first present calculations made with initial condition

h(z, 0) = 1 + 0.1 cos(πz/L). (3.1)

The subsequent evolution is found to depend strongly on the value of L.
If L � π then the domain is too short to include unstable wavenumbers and a film

of uniform thickness is stable.
If L > π then the initial perturbation to a uniform film grows, and is found to

develop nonlinearly into a number of collars and lobes. The positions of the centres
of these collars and lobes will, in general, depend on the choice of initial condition,
though on short domains there is little or no room for flexibility and the arrangement
of collars and lobes is fixed. As explained below, the arrangement is always fixed for
L < 3π.

3.2.1. Short domains

For the initial conditions (3.1) we find that the arrangement happens to be fixed for
L < 3.72π, and the consequent evolution is relatively straightforward. Profiles of h at
different times are shown in figure 3 for various values of L in this range and also for
the special case L = 4π for which the arrangement becomes fixed after a long initial
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Figure 3. Solutions of (2.5) with initial condition (3.1) for various short domain lengths L.
The symmetry boundary conditions (2.6) imply the other half of the collar (length �= 2π) or
lobe (�< 2π) at each end of the domain. (a) L =1.5π at t = 102, 103, 104. The lobe (implied) in
1 <z/π < 2 drains into the collar in −1 <z/π < 1. (b) L = 2π at t = 102, 104. Adjacent collars
do not drain into each other. (c) L = 3π at t = 102, 103, 104. The lobe in 1 <z/π < 2 drains into
the collars on either side. (d) L = 4π at t = 102, 103, 104, 106. The collar in 2 <z/π < 4 at t = 102

slides left, engulfing a lobe, until it occupies 1 < z/π < 3. It leaves a collar in 3< z/π < 5. This
arrangement of adjacent collars then persists indefinitely.

transient. For L = 1.5π there is half a collar in 0 � z � π having amplitude of order
unity, together with half a lobe of much smaller amplitude in π � z � L (the other
halves are implied by the boundary conditions). The collar and lobe are stationary.
The same qualitative behaviour, with a single half-collar and a single half-lobe, is
obtained whenever π < L < 2π. For L =2π there is room for exactly two half-collars;
for 2π < L < 3.72π there are half-collars in 0 � z � π and L − π � z � L with a lobe
between them; and for L = 4π there is room for exactly two half-collars with a collar
between them. Once half-collars have formed at the ends of the domain, the boundary
conditions (2.6) keep them pinned and the geometric constraints of the short domain
determine the rest of the structure. For the case L =4π it takes until t ≈ 105 for the
arrangement of two half-collars and a collar to be attained, but the arrangement then
persists indefinitely.

Figure 4 shows the time-dependence of the minimum thicknesses between the
various collars and lobes. For L =1.5π and L = 3π the minima all lie between a lobe
and a collar, and the asymptotic variation is h ∝ t−1/2 in accordance with the similarity
solution of Jones & Wilson (1978) and Hammond (1983) described earlier: a spatially
uniform flux proportional to t−5/4 drains from the lobe through the neck into the
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Figure 4. The time-dependence (log-log scale) of the various minima in figure 3 for L = 1.5π
(dotted), 2π (dashed), 3π (long-dashed) and L = 4π (solid). In every instance, where a collar is
adjacent to a lobe h ∝ t−1/2, but where two collars are adjacent h ∝ t−1.

adjacent collar, so that the volume of the lobe decreases like t−1/4. In contrast,
for L = 2π and L =4π the minima all lie between two collars, and the asymptotic
variation is h ∝ t−1. There is found to be no net flux through the minimum and,
instead, a flux proportional to t−5/2 is expelled from the neck into the adjacent collars
so that the minimum thickness of the neck decreases rapidly. Similarity solutions for
this new behaviour will be presented in § 4.

3.2.2. Longer domains

It may seem that the new similarity solutions are only relevant to domain lengths
that permit an integer number of stationary collars or half-collars to fill the domain
completely. In fact, whenever L > 4π there is sufficient room for one or more collars,
which are in the interior of the domain and not pinned by the boundary conditions,
to move sideways, eventually colliding with other collars or half-collars. This sideways
motion is generally accompanied by the ‘eating up’ of a lobe by a collar (see figure 1
and § 5). However, since the collar has fixed length 2π it must leave behind another
lobe as it moves. This daughter lobe is found to have smaller volume than that
consumed, and thus the collar gains volume as it moves; the growth of the collar
provides the energy source for the motion. Sliding and colliding collars form the
generic behaviour for L > 4π, and the collisions are also described by new similarity
solutions (see § 6). The overall dynamics are, however, considerably more complex
than those on a short domain.

For the initial conditions (3.1) these more complex dynamics also occur for 3.72π �
L < 4π, with the computational domain containing a pinned half-collar, a moving
collar, and one or two lobes. The boundary, L =3.72π, between this behaviour, and
the simpler dynamics of two half-collars and a lobe, which is observed for 2π � L <

3.72π, depends on the initial conditions and was found numerically by bisection.
(Consideration of the length requirements of these two arrangements of half-collars,
collars and lobes suggests that the boundary will, in general, lie in the range
3π < L < 4π.)

As a representative example of the case L > 4π, figures 1 and 5–7 show results
for L = 5π. By t = 100 the initial film thickness (3.1) has already developed into
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Figure 5. The film thickness (logarithmic scale) for L = 5π at t = 102 (solid), 105 (dotted), 108

(dashed) and 1010 (long-dashed). The central collar flips between 1 <z/π < 3 and 2 <z/π < 4,
while the daughter lobe left in 1 <z/π < 2 or 3 < z/π < 4 decreases in thickness and volume by
a factor of about 10 on each flip. The motion of the central collar during the first two flips is
shown in more detail in figure 1.
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Lobe

π

Figure 6. The locations of the main minima (solid) and maxima (dashed) for L = 5π as
functions of time (cf. figure 5). The central collar slides relatively rapidly between 1 <z/π < 3
and 2 < z/π < 4 at t = 2 × 106, 4 × 108 and 2 × 1010 (arrows). The maxima at z/π =0 and 5
remain stationary throughout; the maximum of the central collar oscillates to and fro between
z/π =2 and z/π = 3; the maximum of the lobe near z/π = 1.5 or 3.5 disappears abruptly when
it is overrun by the central collar and reappears as a maximum of the daughter lobe on the
other side of the collar.

recognizable half-collars at the ends of the domain, with a lobe in 1<z/π < 2 and
a collar in 2<z/π < 4 (figure 1a). Subsequent snapshots of the film profile (figures 1
and 5) show that the collar and lobe swap places at least three times up to time
t = 1010 with the lobe becoming smaller on each occasion. The kinematics of these
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Figure 7. A detail of figure 6 expanded to show the sliding motion of the central collar
near t = 4.7 × 108 by the locations of the main minima (dashed) and maxima (solid). The
lobe in 1 � z/π � 2 is overrun by the sliding collar and a new daughter lobe is left behind in
3 � z/π � 4.

swaps can be seen in figures 6 and 7. As t increases from 102 to 105 the collar slides to
the left from 2<z/π < 4 into 1<z/π < 3, consuming the lobe ahead of it and leaving
a smaller daughter lobe behind in 3 <z/π < 4. At around t = 2 × 106, the collar slides
back to 2 <z/π < 4 leaving an even smaller daughter lobe in 1 <z/π < 2. The collar
slides left again around t = 4 × 108 (figure 7) and right again around t = 2 × 1010.
Though each sliding event takes longer than the one before, the sliding time becomes
negligible compared to the waiting time between sliding events and thus later sliding
events appear to be instantaneous on the logarithmic timescale used. It can be seen
from figure 5 that the amplitude of the lobe decreases by a factor of about 10 in each
sliding event.

From figure 8 it can be seen that the amplitudes of the minima decrease like t−1

on average, though there are large perturbations during and after sliding. In contrast,
after the early evolution the heights of the collars remain almost constant (figure 5) and
the maximum height of the lobe is almost constant between sliding events (figure 8).
The lobe height decreases in a stepwise fashion with an average rate of decrease
consistent with a t−1/2 power law. It can also be seen that there are two minima near
one of the necks, either at z/π = 1 or z/π =4, depending on which side of the domain
the moving collar is at. The rate of dissipation Φ , evaluated using (2.8), also decreases
episodically (figure 9) with large peaks during the sliding events.

Many of the details of these figures can be interpreted more fully in the light of the
solutions to be developed in the following sections. It should be clear that in order
to understand the physics of drainage at least three processes require description: the
relatively rapid sliding of a collar across the domain; the slower t−1 decrease of the
minima between adjacent, almost stationary collars; and the initiation of the next
sliding event. These processes are the subjects of § § 5–7.
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Figure 8. The heights of the main minima for L =5π. The numbers denote the approximate
value of z/π at the minima. A long-time average decrease proportional to t−1 can be seen for
every minimum. The spikes correspond to rapid variations as the collar slides from one side
to the other. The appearance of a secondary minimum near 2π or 3π just before each sliding
event corresponds to the arrival of the peeling wave analysed in § 7. The long-dashed curves
show the height of the lobe labelled by the approximate value of z/π at the maximum; the
stepwise decrease is consistent with a very-long-time average proportional to t−1/2.
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Figure 9. The rate of dissipation Φ = −dE/dt for L = 5π as given by (2.8). The peaks occur
during the sliding events and decrease roughly as t−5/4. The decrease in Φ between two sliding
events shows two regimes: first a rapid decrease that seems to tend towards t−5/2; then a
near-plateau region of very much slower decrease. These regimes correspond to the collision
of collars and the peeling process analysed in § § 6 and 7. The very-long-time average rate of
decrease of Φ is consistent with t−5/2. The features of this graph are discussed and interpreted
further in § 7.3.
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4. Interaction of two stationary collars, L = 2π

It is clear from figure 4 that for L =2π (and also for L = 4π) the heights of
the minima between the adjacent collars decrease like t−1 instead of the Hammond
scaling t−1/2. These calculations represent something of a special case since the domain
length is an integer multiple of the 2π length of a collar, but prove to be a useful step
towards understanding the generic behaviour in longer domains when two collars
collide. That the Hammond solution for an adjacent lobe and collar cannot describe
the neck between adjacent collars can be seen from the fact that the similarity solution
for (2.12) must match to a non-zero contact angle on one side.

A solution for the neck between two collars must match to prescribed O(1)
curvatures on either side. Since we have observed that h ∼ t−1, we thus expect the
lengthscale of the neck to be t−1/2. Accordingly, we seek an asymptotic solution of
(2.5) in the similarity form

h(z, t) = t−1F (ζ ), where ζ = (z − zn)t
1/2 (4.1)

and z = zn is the location of the neck. It follows that hz � hzzz in the neck, so (2.5)
reduces to the thin-film equation ht =

1
3
(h3hzzz)z, and F satisfies

−F + 1
2
ζF ′ + 1

3
(F 3F ′′′)′ = 0. (4.2)

The generic behaviour of (4.2) as F → ∞ is given by F ′′′ ∼ 0 so that F = 1
2
αζ 2 +

βζ + γ + O(ζ −1), where α, β and γ are constants that may take different values on
either side of the neck. We anticipate that four boundary conditions, obtained by
matching the neck to the adjacent collars, will be needed to provide a unique solution
to (4.2). The rescaling F → λ4F , ζ → λ3ζ , where λ is a constant, leaves (4.2) invariant;
solutions to (4.2) thus form a three-parameter family.

The similarity equation (4.2) is found to underpin most of the work in this paper.
We will show in § 6 that in an appropriate asymptotic limit it includes the Landau–
Levich equation (5.4) below. It is found also to describe the neck region between
two colliding collars (with a double-minimum W-shaped solution) and the trailing
edge of a colliding collar (with a single-minimum U-shaped solution). While this
class of problem has received attention previously (Bertozzi et al. 1994; Hastings &
Peletier 1998), we are not aware of any studies treating (4.2) subject to the boundary
conditions we describe below.

For L = 2π the two half-collars are pinned by the boundary conditions and take
the form

h = A(1 + cos z) + B, (4.3)

with A= A− in 0 � z/π < 1, A= A+ in 1<z/π � 2 and B = O(t−1). The values of A±,
which depend on the initial conditions, determine the quadratic coefficients α in the
asymptotic behaviour of F as ζ → ±∞. For sideways translation of a collar with
velocity c(t), ht = −chz. This condition can provide a consistent matching with a neck
described by (4.1) and (4.2) only if c = βt−3/2/(2α). Since for L =2π the half-collars are
pinned with c = 0 by the boundary conditions at z = 0, L, we conclude that the linear
terms must vanish and thus the appropriate boundary conditions for the similarity
solution of (4.2) are

F = 1
2
A±ζ 2 + 0.ζ + O(1) as ζ → ±∞. (4.4)

Equations (4.2) and (4.4) were solved using MATLAB for A− =1.523 and
A+ = 0.4766. These values were chosen so as to correspond to the initial conditions
(3.1) with L = 2π. Figure 10 shows excellent agreement with scaled profiles of the neck



324 J. R. Lister, J. M. Rallison, A. A. King, L. J. Cummings and O. E. Jensen

–5 –4 –3 –2 –1 0

ζ

1 2 3 4 5
0

50

100

150

200

0

0.5

1.0

1.5

2.0

F ′′F

Figure 10. Solution of the similarity equations (4.2) and (4.4) for A− = 1.523 and A+ = 0.4766
showing F (dashed, left-hand scale) and F ′′ (solid, right-hand scale). Also shown are th and
hzz as functions of ζ = (z − π)t1/2 from the solution of (2.5) at t = 104 (squares, every 70th grid
point) and t = 108 (circles, every 50th grid point).

at z = π from the time-dependent solution of (2.5) at t = 104 and t = 108. Detailed
examination of the time-dependent results shows that the term linear in ζ is indeed
absent.

It is evident from (4.1) that the flux q = 1
3
h3hzzz in the neck scales as t−5/2. Moreover,

for stationary collars (4.2) shows that as ζ → ∞, F → 1
2
αζ 2 + γ + O(ζ −2) and thus

q → γ ζ t−5/2. Because this leading-order flux has opposite signs on either side of
the neck, the conclusion in Jones & Wilson (1978) and Hammond (1983) that the
flux is spatially uniform through the neck is not appropriate here: at leading order
there is no net transfer of fluid from one collar to its neighbour (even though the
associated pressures are different). Instead the flux arises principally because the neck
thickness decreases in time and fluid is squeezed into the collars on either side at a
rate proportional to t−5/2. In consequence, the energetically favoured state in which
one collar drains into its neighbour proves to be inaccessible: the neck collapses too
rapidly.

The t−1 dependence of the neck thickness causes the values of A and B in (4.3) to
vary slightly by O(t−1) amounts. Thus in the collars, as in the neck, ht =O(t−2). Hence
the flux q in the collar is O(t−2). Since, as we have noted, the flux across z/π =1 is
o(t−2), the volume of each collar is constant at leading order, and so At ∼ −Bt and
q ∼ −(A±)t sin z. These conclusions are supported by plots of the scaled flux t2q and
t2qz in figure 11. The apparent jump in t2qz across z/π = 1, which is actually smoothed
across the small O(t−1/2) neck region, reflects the different values of γ as ζ → ±∞.

4.1. The case L =4π

The case L =4π differs from L =2π in that the central collar is not quite stationary.
After the initial translation to 1<z/π < 3 shown in figure 3(d), the collar is found
numerically to drift sideways by an O(t−1/2) distance with a speed O(t−3/2). Equation
(4.2) governs similarity solutions F1 and F3 for the necks near z = π and z = 3π, but
the drift velocity of the collar now requires a corresponding non-zero value of β on
the appropriate side of each solution. Given β and the collar amplitudes, there are
sufficient boundary conditions to determine F1 and F3; the value of β , and hence



Collars and lobes 325

0 1 2
–40

–20

0

20

40

z/π

t2q

t2qz

Figure 11. The scaled flux t2q and t2qz for L = 2π from the solution of (2.5) at t = 104

(dashed) and t = 108 (solid). The flux across z/π = 1 is o(t−2). The form of q is consistent with
ht ∼ At cos z in each collar.

the drift velocity, is determined by the additional matching condition that not only
β but also γ is the same for F1 as ζ → ∞ and for F3 as ζ → −∞. The above analysis
of the central collar motion for the case L = 4π is extended to that of general collar
collisions in § 6, and so we defer further discussion until then.

5. Sliding: translation of a collar over a lobe
From figures 5–7 it is evident that a collar with h = O(1) can slide over a lobe

with h � 1 leaving a new and even thinner lobe behind it. The process is readily
understood once it is realized that a collar is capable of self-induced, surface-tension-
driven translation over a uniform film. The analysis below is related to previous work
(e.g. Kalliadasis & Chang 1994; Kerchman & Frenkel 1994; Chang & Demekhin
1999; Jensen 2000) on gravity-driven translation of a collar or drop along a tube
or fibre, but shows that gravity is not necessary for translation; capillarity alone is
sufficient provided some initial left–right asymmetry is present to start the motion off.

5.1. Model problem

We seek a solution of (2.5) that describes a collar of prescribed volume V of order
unity translating with constant speed c > 0 to be determined over a uniform (unstable)
layer of much smaller prescribed thickness h+. The translating collar leaves behind
a layer of even smaller thickness h− that we also wish to find. Under our non-
dimensionalization, the speed c has the significance of a capillary number. The
volume of the collar clearly increases at a rate dV/dt = c(h+ − h−). From (2.11a, b)
the energy of a collar is −V 2/(4π), and the decrease of interfacial energy associated
with the growth of the collar provides the driving force for translation.

Let δ = (h+/A)1/2, where A= V/2π is the amplitude of the collar, and suppose that
δ � 1. It follows that collar growth is slow over the time taken for propagation over its
own length. We can thus look for a quasi-steadily propagating solution h(z, t) = h(x),
where x = z − ct , which satisfies

(h3(h′ + h′′′))′ = 3ch′ + O(δ2ch) (5.1)
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and h → h± as x → ± ∞. In the collar h = O(1) and p = −h − h′′ is approximately
constant. Anticipating the scaling c =O(δ3), we can solve (5.1) to give the quasi-steady
collar shape as

h = A(1 + cos x) + B + O(δ3). (5.2)

In order to match to the uniform films ahead and behind, we expect that B =
O(h±) = O(δ2).

Near x = ± π there are small regions of size δ where the curvature changes rapidly
in order to match the edges of the collar to the uniform films and hence h′′′ 
 h′.
These regions are analogous to those in the Bretherton problem (Bretherton 1961).
We rescale the variables accordingly, by defining

h = h±H±(ξ ), where ξ = (3c)1/3(x ∓ π)/h±. (5.3a, b)

Integrating (5.1) once, we obtain at leading-order the Landau–Levich equation
(Landau & Levich 1942)

H 3H ′′′ = H − 1 (5.4)

in both regions. The neglected higher-order terms are O(δ). Equation (5.4) has a
unique solution H−(ξ ) with

H− → 1 as ξ → −∞, H− ∼ 1
2
a−ξ 2 + b− as ξ → ∞, (5.5a, b)

where a− = 0.6430 and b− = 2.8996 (e.g. Jensen 2000), and a one-parameter set of
solutions H+(ξ ; λ) labelled by λ with

H+ → 1 as ξ → ∞, H+ ∼ 1
2
a+(λ)ξ 2 + b+(λ) as ξ → −∞. (5.6a, b)

Matching (5.5b) and (5.6b) to (5.2), we find that

A(3c)−2/3 = a−/h− = a+/h+, B = h−b− = h+b+. (5.7a, b)

It follows that a+(λ)b+(λ) = a−b−, which has a unique solution found numerically as
a+ = 5.59 and b+ = 0.333, so that

h− = (a−/a+)h+ = 0.115h+. (5.8)

The propagation speed

c = 1
3
(Ah+/a+)3/2 = 0.646(Ah−)3/2 (5.9)

is O(δ3) as expected.
There is a precursor capillary wave ahead of the collar where H+ decays exponen-

tially to unity. The e-folding decay length of this region is [ 1
2
(3c)1/3/h+]−1 ∼ 5(h+/A)1/2.

In order to test this analysis, we solved (2.5) numerically with initial condition

h = (1 + cos z̃) + 0.009 + 0.001 sin(z̃/2) (|z̃| � π), (5.10a)

h = 0.009 + 0.001 sgn(z̃) (|z̃| � π), (5.10b)

where z̃ = z − 3π. The value of δ is then 0.1. The difference in the initial thicknesses
0.008 and 0.01 on the two sides of the collar initiates motion to the right (figure 12),
where the pressure is slightly lower, and after a short transient the collar is seen to
undergo steady translation leaving a film of uniform thickness h− = 0.00124 behind
it. The capillary wave at the front of the collar agrees well with the predicted
solution H+ of (5.4). The 8 % difference may be attributable to O(δ) corrections. The
numerics confirm that the speed of the steadily translating collar, and the thickness
of the deposited film, are determined entirely by the amplitude of the collar and the
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Figure 12. Quasi-steady translation of a collar with initial amplitude A =1 over a uniform
layer with h+ = 0.01. Most of the collar is thus off the vertical scale. The initial conditions
(5.10) (dotted) describe a collar in 2 < z/π < 4 with a film of thickness 0.008 in z/π < 2 and
0.01 in z/π > 4. As the collar slides to 6 <z/π < 8 (bold) it deposits a film of thickness
h− = 0.00124. The solutions (solid) are shown at equal time intervals of 105. The dashed curve
is the leading-edge solution H+ of (5.4) rescaled to give h(x).

thickness of the film ahead of the collar (see (5.9)). Further analysis is required to
describe the initial transient.

It is worth noting that the only assumption made in this analysis is that the ampli-
tude of the collar is much larger than the lobe or layer thickness that it consumes. If
the initial coating of the cylinder has thickness comparable to the cylinder radius then
the equilibrium shape of a collar of large volume is determined by the condition of
constant nonlinear curvature (2.1) and is non-sinusoidal. Nevertheless, provided the
lobe or layer is sufficiently thin for (2.5) to apply, equation (5.8) for the thickness of
the deposited layer still holds, but equation (5.9) for the speed of translation requires
replacement of the factor A by the curvature at the foot of the finite-amplitude collar
(see Gauglitz & Radke 1988; Jensen 2000; Lister et al. 2006).

5.2. Application to the sliding collar

The steady propagation speed in the model problem above is determined by the
Landau–Levich regions at the edges of the collar, which have a short O[(Ah+)1/2]
lengthscale. It follows that if the film thickness in the lobe ahead of the collar varies
on a much longer lengthscale then the collar should propagate quasi-steadily with a
speed determined, using (5.9), by its amplitude A and the film thickness h+ =h(z) just
ahead of its leading edge. Similarly, from (5.8) the collar should deposit (for c > 0) a
daughter lobe of thickness h−(z) = 0.115h(z +2π) behind it. Because the original lobe
has constant curvature, so does the daughter lobe; thus no further adjustment of the
daughter lobe is required in this regime.

The length of a lobe and the amplitude of a collar are generally O(1) and thus
the quasi-steady approximation should hold if the lobe thickness h+ � 1. The sliding
collar in figure 7 has amplitude A= 1.285, and the maximum thickness of the lobe
being consumed is 0.00163, giving δ < 0.04. Figure 13 shows the speed of the collar
maximum together with the speeds predicted from the lobe thicknesses h+ and h− by
applying (5.9) and the quasi-steady approximation. The agreement is good, confirming
not only the predicted time-dependence of the translation speed, but also the predicted
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Figure 13. The speed c < 0 of the collar maximum (solid) as a function of its position z for
the sliding motion shown in figure 7. Also shown are the speeds predicted using (5.7a) from the
computed shape h+ of the lobe in 1<z/π < 2 at t = 4 × 108 (dashed) and from the computed
shape h− of the daughter lobe left in 3 < z/π < 4 at t = 4.5 × 108 (dotted).

proportionality of the size of the original and daughter lobes. The small differences
can again be attributed to the O(δ) corrections, including the variation of the initial
lobe thickness over the scale of the Landau–Levich regions.

Taking the maximum height of the deposited daughter lobe as hm, the time taken for
a lobe of width π to be consumed may be estimated using (5.9) as π/c = O[5(Ahm)−3/2].
Thus the predicted duration of the sliding event at t = 2 × 106 in figure 6 (with A ∼ 1
and hm ∼ 10−3) is 2 × 105, and, on the assumption that drainage from the lobe is
negligible between sliding events, each subsequent event takes a factor (0.115)−3/2 ∼ 26
longer, as may be seen in figure 7 for the next event.

As a collar of amplitude A approaches the far end of the lobe being consumed,
both h+ and c decrease toward zero. At distance �z from the end of a lobe of length
π, h+ =O(4�z hm/0.115π) and so the length of the leading Landau–Levich region
is, as estimated above after (5.9), O[5(4�z hm/0.115πA)1/2]. By equating this length
to �z, we estimate that the regime of relatively rapid, quasi-steady sliding over a
lobe finishes when �z =O(300hm/A), h+ =O(3000h2

m/A) and h− = O(300h2
m/A), and

a new regime is entered in which the collar is almost, but not quite, stationary and
adjacent to another collar. This new regime is long-lived and prevails during the long
intervals between the relatively rapid sliding events (figure 6).

6. Stopping: the collision of two collars
The rapid sliding regime ends with the collision of the central sliding collar with

the stationary half-collar at one end of the domain. In the new regime the central
collar continues to move towards the end collar (figures 6, 7) with a velocity that
is found to decrease like t−3/2 (see below). Both the minimum height between the
colliding collars and the minimum height between the moving collar and the trailing
daughter lobe decrease like t−1 (figure 8). We now present analyses for the leading
and trailing edges of the slowly moving collar. The analyses are good approximations,
but are not ultimately asymptotic owing to the peeling process described in § 7 below
that eventually ends the collision and initiates the next sliding event.



Collars and lobes 329

A–

A+

zn – π

U–τ
–3/2

U+τ
–3/2

zn

zzn + π

τ 
–1F(ζ)

Figure 14. Schematic for the analysis in § 6.1. Collars with amplitudes A± and velocities
U±τ−3/2 collide. The solution near the collision at z = zn (detail) is described by a similarity
solution of the form h = τ−1F (ζ ) (see figure 15). For L = 5π either U− = 0 or U+ = 0 owing to
pinning of one collar by the boundary conditions.

6.1. Leading edge of the colliding collar

Motivated by the numerical results, we seek a similarity solution for colliding collars
of the form

h(z, t) = τ−1F (ζ ), where ζ = (z − zn)τ
1/2, (6.1)

zn is the location of the collision and τ = t − t0 is the time since the last sliding event at
time t0. The value of t0 can only be defined approximately, but since the sliding event
is relatively rapid, it may arbitrarily be taken as when the event is 90 % complete. As
in § 4, F satisfies (4.2) and

F = 1
2
α±ζ 2 + β±ζ + γ± + O(ζ −1) as ζ → ±∞. (6.2)

The collars on either side of the collision are described by

h = A±
[
1 + cos

(
z − zn ∓ π + 2U±τ−1/2

)]
+ D±τ−1, (6.3)

where the collars move with velocities c± =U±τ−3/2 and the coefficients D± are O(1)
(figure 14). By matching the similarity solution to the collars, we deduce that the
boundary conditions on (4.2) are now

F = 1
2
A±ζ 2 + 2A±U±ζ + (2A±U 2

± + D±) + O(ζ −1) as ζ → ±∞. (6.4)

The values of A± are given by the sizes of the collars and depend on the initial
conditions. For L =5π one of the collars is at the end of the domain and pinned by
the boundary conditions; thus either zn = π and U− = 0 or zn =4π and U+ = 0. An
approximate theory for the velocity of the other collar will be discussed in § 6.3. For the
moment, we use the numerically determined values U+ = −20.3 for 104 < t < 2 × 106

with zn = π, and U− =24 for 3 × 106 < t < 4 × 108 with zn =4π (see figure 5). These
values are estimated from the changes in position of the moving collar maximum
and are subject to numerical uncertainties of ±2 % and ±5 % respectively. The four
values A±, U± provide the four boundary conditions in (6.4) needed to give a unique
solution to (4.2).

In figure 15 we show five profiles from 104 � t � 106 and five profiles from 3 ×
106 � t � 3 × 108, collapsed according to the similarity scaling (6.1). Also shown are
the solutions of (4.2) with boundary conditions appropriate to the two time intervals.
The agreement is excellent, showing that that the evolution of the neck is given by
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Figure 15. The shapes h(z, t) (solid lines) scaled according to (6.1a) at various times together
with the similarity solution (dashed) to (4.2) with boundary conditions (6.4). (a) The shapes
at t = 104, 3 × 104, 105, 3 × 105 and 106 are plotted against ζ = (π − z)t1/2, and the similarity
solution is for A− = 1.28, A+ = 1.63, U− = 20.3 and U+ = 0. (b) The shapes at t = 3 × 106, 107,
3 × 107, 108 and 3 × 108 are plotted against ζ = (z − 4π)(t − 2.2 × 106)1/2, and the similarity
solution is for A− = 1.28, A+ = 0.809, U− =24 and U+ = 0.

the similarity equations with the appropriate values of A± and U±. The W-shapes
correspond to the double minima seen in figure 8.

Some insight into the structure of the W-shaped solutions in figure 15 is provided
by the following approximate analysis. Suppose the central hump, in ζ− <ζ < 0, say,
is approximately parabolic with maximum Fm, i.e. F =4Fmζ (ζ− − ζ )/ζ 2

−. Then from
(4.2) the scaled flux Q = 1

3
F 3F ′′′ satisfies Q′ = F − 1

2
ζF ′, which may be integrated

to give Q =Q+ + Fmζ 2/ζ−, where Q+ = Q(0). Let Q− denote Q(ζ−) = Q+ + Fmζ−.
Provided the values of F at the two minima are much smaller than Fm, the fluxes at the
minima are approximately uniform and the Jones–Wilson solution (2.9) applies locally.
Let θ = −4Fm/ζ− be the slope of the parabola at each end point. Then by setting
F =3Q+θ−3F with ζ = 3Q+θ−4X, and F = 3Q−θ−3F with ζ − ζ− = −3Q−θ−4X, we
recover at each end the canonical problem

F3F′′′ = 1, F ∼ 1
2
CX2 as X → ∞, F ∼ −X as X → −∞, (6.5)

with C ≈ 1.2098 (Jensen 1997), so that q± = 1
3
Cθ5/A±. Given the three parameters

A± and U− (with U+ =0) in (6.4), we now have sufficient conditions to determine
ζ− = −2U−, the fluxes Q+ > 0 and −Q− < 0 from the central hump to the right-hand
and left-hand collars respectively and the hump maximum Fm. This approximation is
asymptotic for solutions of (4.2) in which the values of F at its minima are much less
than Fm and this is guaranteed whenever U

1/2
− A

3/4
± 
 1. Even though the minimum

values of F for the data in figure 15 are more than half of the maximum value, the
composite approximation constructed by combining the parabolic outer and Jones–
Wilson inner solutions in figure 16 (composite solutions for each half of the solution
were patched together at ζ = ζ−/2) captures the primary physical features of the
solution reasonably well.

6.2. Trailing edge of the colliding collar

We have noted that when the collision occurs at the sliding collar’s leading edge, the
speed c of the collar ceases to be given by (5.9) and switches to Uτ−3/2 for some
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Figure 16. Similarity solutions (solid lines) from figure 15 together with composite approxima-
tions (dotted) based on patching Jones–Wilson inner solutions (6.5) for the minima to parabolic
outer solutions. (a) A− = 1.28, A+ =1.63, U− = 20.3 and U+ = 0. (b) A− = 1.28, A+ = 0.809,
U− = 24 and U+ =0.

U . Without loss of generality, we consider the case U > 0 so that the trailing edge
is at x̃ = −2Uτ−1/2, where x̃ = z − (zn − 2π). For the case U < 0 minor modifications
are required to the direction of some of the limits. We also drop the subscript on
the constants A and D that correspond to the shape of the moving collar in (6.3)
since these constants describe the shape of the collar both ahead of its trailing edge
and behind its leading edge. In this subsection the subscript ‘−’ relates to the film
deposited behind the trailing edge of the moving collar.

We assume, as a first approximation when U is large, that the collar motion con-
tinues to deposit a thin film quasi-steadily at the trailing edge with thickness h− given
by the Landau–Levich result in (5.7a). Thus the thickness deposited at x̃ = −2Uτ−1/2

is given by Ah− = a−(3U )2/3τ−1. Eliminating τ , we obtain

h− =
32/3a−x̃2

4AU 4/3
= 0.334

x̃2

AU 4/3
. (6.6)

From (5.3b) and (6.6), we deduce that the lengthscale of the Landau–Levich region
is O[x̃/(AU 2/3)], which is short compared to x̃ provided U 
 1. A crude estimate
for U may be made by noting that the deposited film given by (6.6) must join on
to the daughter lobe where x̃ ∼ 300hm/A and h− ∼ 300h2

m/A. This gives U ∼ 20; the
measured numerical values are a little higher than this estimate. Although this lends
weight to our suggestion that U may be treated as a numerically large parameter, we
emphasize that U is not large in any asymptotic sense. Although the deposited layer
(6.6) has constant curvature (of size about 0.01), this curvature differs, even in sign,
from that of the main part of the daughter lobe. In consequence, its shape cannot
persist for long times; some further adjustment in shape must take place. In figure 17
we show a series of profiles near the trailing edge of the collisions that occur during
104 � t � 2 × 106 and 3 × 106 � t � 4 × 108. As the trailing edge approaches 2π and
3π, respectively, it can be seen that the collar does indeed deposit a film of thickness
given approximately by (6.6). It can also be seen that the deposited quadratic profile
is subsequently ‘peeled’ away again by a disturbance that follows and is catching up
with the moving collar. This peeling wave is described further in § 7.
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Figure 17. The neck shapes h(z, t) at the trailing edge of the sliding collar at (a) t = 104,
3 × 104, 105, 3 × 105 and 106 and (b) t = 3 × 106, 107, 3 × 107, 108 and 3 × 108. The quadratic
profile (6.6) (long-dashed) gives an approximation to the film thickness deposited by the
retreating collar, before it is peeled away again by the following disturbance. In (a) the collar
is to the left and the daughter lobe, of height hm = 0.015, is to the right; in (b) the collar is to
the right and the daughter lobe, of height hm = 0.0016, is to the left.

Because the deposited thickness varies like τ−1 over an O(τ−1/2) lengthscale, it is
possible to replace the Landau–Levich approximation to the trailing-edge structure
by another similarity solution of the form h = τ−1F (x̃τ 1/2), where F satisfies (4.2) and
boundary conditions of the form (6.4). Such a data collapse is shown in figure 18 for
the deposition shown in figure 17(a). We note that the region of self-similar behaviour
is of limited spatial extent, and further that it cannot describe the peeling event that
follows: the peeling wave speed does not scale like τ−3/2 and hence the profile cannot
be truly self-similar in the far field.

In order to determine the similarity function F , we suppose that a collar of specified
amplitude A is sliding in the region ζ > 0 with a known velocity Uτ−3/2. The boundary
conditions for (4.2) as ζ → ∞ are then F → 1

2
Aζ 2 − 2UAζ +O(1). In addition, partly

motivated by (6.6) and figure 18, we assume that as ζ → −∞, F → 1
2
A−ζ 2 + O(1) for

some A−. Now with the change of variable ζ̃ = ζ − 2U , the similarity equation (4.2)
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Figure 18. The five shapes from figure 17(a) replotted in similarity variables with ζ =
(3π−z)t1/2. There is excellent collapse on the side of the retreating collar and near the minimum,
but the peeling process disrupts self-similarity on the side of the deposited film. The quadratic
profile (6.6) (long-dashed) slightly underestimates the deposited thickness. The similarity solu-
tion (6.7) (long-dashed, bold) with U = 20.3, A = 1.28 and A− taken from (6.6) gives excellent
agreement.

becomes

1

3

d

dζ̃

(
F 3 d3F

dζ̃ 3

)
= F − 1

2
ζ̃

dF

dζ̃
+ U

dF

dζ̃
, (6.7)

which is computationally more convenient. Moreover, if |U | is large the dominant
balance is between the first and last terms, recovering the Landau–Levich equation
(5.4) as the leading-order approximation, and suggesting that (6.6) may be used to
give a first approximation for A− as 0.668/AU 4/3. Given the values of A and U ,
the similarity equation (4.2) or (6.7) then has a unique solution, which is plotted in
figure 18 for U = 20.3 and A= 1.28; given the caveats expressed above, agreement
with the collapsed data is remarkably good.

6.3. Determination of the collision speed Uτ−3/2

We have shown that with a numerically fitted value for the collar speed Uτ−3/2 it
is possible, provided that |U | 
 1, to explain the profile of h near the leading and
trailing edges by means of the similarity equation (4.2). By combining these results
we can find U to a good approximation.

The key is to match the constant Dτ−1 for the shape (6.3) of the moving collar to
the similarity solutions at the leading and trailing edges. For the leading edge, the
coefficient γ− in the expression (6.2) for the far field of F on the side of the moving
collar may be found numerically from the similarity solution. The matching condition
(6.4) gives D = γ− − 2AU 2.

For the trailing edge of the moving collar, two levels of approximation are possible.
If the trailing edge is treated as a Bretherton problem (appropriate in the limit U → ∞)
then from (5.5b) and (5.7), so that Dτ−1 = b−h− = b−a−(3U )2/3τ−1/A, we deduce that

Aγ− − 2A2U 2 = b−a−(3U )2/3. (6.8)

For the two collisions shown in figures 15 and 17, this equation gives U = −15 and
U = 18 compared with the observed values U = −20.3 and U = 24 respectively.
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An improved approximation is obtained by treating the trailing edge as a similarity
equation as described in §6.2 above. In that case, as ζ̃ → ∞, F = 1

2
Aζ̃ 2 + γ̃ for a

constant γ̃ that is determined by the trailing-edge similarity solution and so

D = γ̃ = γ− − 2AU 2. (6.9)

This equation, which now couples the behaviour at the leading and trailing edges,
gives U = −20.7 and U = 24.5 for the two sliding events, in much closer agreement
with the observed values.

We believe, but have not been able to prove, that this method provides the first two
terms in an asymptotic expansion in |U | 
 1; it seems fortuitous that the numerical
value of |U | is sufficiently large to provide good accuracy.

7. Peeling: adjustment of a daughter lobe
In our discussion of figures 17 and 18 we have already noted that the quadratic

profile deposited by the trailing edge of a colliding collar is subsequently peeled away
by a disturbance that follows the collar and eventually catches up with it. Peeling is
the third and final process identified in § 3.2 to be understood.

7.1. Model problem

Peeling is driven by the difference in pressure between the daughter lobe created
by sliding (§ 5.2) and the quadratic profile (6.6) created during collision (§ 6.2). It
can be thought of as the daughter lobe spreading over the quadratic profile and
adjusting toward a static equilibrium. Peeling is thus closely related to the simpler
model problem of capillary spreading of a drop over a uniform precursor film.

As described by Tanner (1979) and Tuck & Schwartz (1990), capillary spreading
over a uniform film can be analysed using another solution of the Landau–Levich
equation (5.4) to describe the flow near the edge of the drop. We let the film thickness
be h0 and look for a travelling-wave solution to 3ht + (h3hzzz)z = 0 with speed c � 1.
On making the substitution

h = h0H (ξ ), where ξ = (3c)1/3(z − ct)/h0, (7.1)

and integrating once, we again obtain the Landau–Levich equation (5.4). In order
to match to a uniform film ahead and the roughly linear profile of the edge of a
capillary-static drop behind, we require

H → 1 as ξ → ∞, H = o(ξ 2) as ξ → −∞. (7.2)

The absence of a quadratic term as ξ → ∞ defines a unique solution (a− =0) among
the one-parameter family H+(ξ ; λ) of § 5.1. This solution obeys

H ∼ −ξ (3 ln |ξ |)1/3 as ξ → −∞ (7.3)

and is shown in figure 19 with the origin chosen so ξ = 0 coincides with the pressure
minimum. The minimum in H (≈0.82) corresponds to the secondary minimum that
spontaneously appears in figure 8 just before each sliding event and that can be seen
on the point of developing at t = 106 in figure 18.

If we match (7.3) to a drop with apparent contact angle θ = −hz at height hθ 
 h0

then we deduce that

c =
θ3

9 ln(hθ/h0)
(7.4)
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Figure 19. The solution to equations (5.4) and (7.2) for steady spreading over a film of
uniform thickness: H (solid, left-hand scale); pressure p = −H ′′ (dashed, right-hand scale).
The asymptotes H → 1 and H ′′ → 0 as ξ → ∞ are shown long-dashed.

(cf. King & Bowen 2001), which is sometimes known as Tanner’s law. A natural
point for matching is the inflection point (Tanner 1979), where the positive pressure
of the quasi-static drop is equal to the negative pressure in the outer limit of the
Landau–Levich solution. Other prescriptions are formally equivalent to within the
logarithmic errors involved in any leading-order approximation for this problem.

7.2. Application to peeling near the trailing edge of a collar

It may seem that Tanner’s law applies to the peeling of the deposited layer in our
full problem, using the inflection point of the daughter lobe to define the slope θ and
the height hθ . There are two difficulties with this direct application. First, the layer to
be peeled has a quadratic thickness profile h−(x̃) given by equation (6.6). Variations
in layer thickness over the relevant Landau–Levich lengthscale h−/(3c)1/3 will be
negligible only if h′

−(x̃) � (3c)1/3 and, on the basis of the estimates made earlier, this
requires that x̃ � 70hm. Second, the collar lies a distance at most x̃ ahead of the
peeling wave, and this distance will only be large compared with the Landau–Levich
lengthscale (so that the peeling wave does not ‘see’ the collar) if the same criterion
x̃ � 70hm is met. Thus, given that x̃ ∼ 200hm when peeling starts, Tanner’s law can
be expected to apply only late in the peeling process when the relevant value of
h− and the corresponding Landau–Levich lengthscale have decreased substantially.
Paradoxically, this is close to the point at which the peeling wave catches up with the
trailing edge of the collar so that peeling ceases! At earlier times, both the variations
in the layer thickness and the proximity of the collar are likely to cause deviations
from Tanner’s law.

In order to facilitate comparison between the solution of the model problem and
the peeling wave in the full problem, we rescale the numerical results in an analogous
manner to (7.1). We define

H (ξ ; t) = h(z, t)/hp(t), where ξ = [3c(t)]1/3[z − zp(t)]/hp(t), (7.5)

zp(t) is the location of the pressure minimum of the peeling wave, hp(t) = h(zp, t) and
c(t) = dzp/dt . The resultant pressure profiles at various times are shown in figure 20.

The scaling (7.5) successfully collapses the width of the main pressure minimum,
but not its amplitude, and reproduces the form of the pressure profile (figure 19) for
steady spreading on the peeled side (ξ < 0). The lack of collapse in ξ > 3 reflects the
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Figure 20. The pressure in the peeling wave for two different sliding events at various times
rescaled according to (7.5). The profiles approach the solution (bold, long-dashed) for steady
spreading over a precursor film of uniform thickness. (a) t = 3 × 104, 105, 3 × 105, 106, and
1.2, 1.4, 1.6, 1.8 × 106. (b) t = 107, 3 × 107, 108, and 3.0, 3.2, 3.4, 3.6, 3.8 × 108. Arrows show
increasing times.

fact that the neighbouring collar, with its large negative pressures, is sufficiently close
to be seen on this scale. As t increases towards 2 × 106 and 4 × 108, the amplitudes of
the main pressure minimum and the maximum near ξ = 3 approach those for steady
spreading. This is probably due to the fact that the height hp , which is part of the
lengthscale used to define ξ , is decreasing like t−1, more rapidly than the distance (in
z) between the peeling wave and the collar, and hence the collar is becoming more
distant in ξ . The peeling wave is, however, catching up with the trailing edge of the
collar in the original coordinate z.

In figure 21 we compare the speed dzp/dt of the peeling wave to the Tanner-law
prediction (7.4), where θ(t) and hθ (t) are defined from the slope and height at the
inflection point in the numerical profiles. The decrease with time in the predicted speed
is largely due to the decrease of hp(t) and the consequent increase of the logarithm in
(7.4). We have been unable to find a convincing physical explanation for the extent
of the substantial under-prediction of the actual peeling speed at early times: the
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Figure 21. The speeds of the pressure minimum in the peeling wave (solid) and of the collar
(dotted). The peeling-wave speed is increasingly well predicted by (7.4) (dashed line) and is
sufficiently large for the peeling wave to catch up with the trailing edge of the collar in finite
time.

flux from the nearby collar is negligible, and separate numerical calculations show
that it is reasonable to use (7.4) as a quasi-steady approximation for spreading over
a non-uniform layer. The improving agreement as t increases mirrors that of the
pressure profiles in figure 20, and suggests that the issue may again be the distance
to the collar on the scale of ξ . It is striking that the variation in velocity with time
appears similar in form for the two sliding events in figure 21, apparently scaling as
h3

m and thus differing in magnitude by a factor 0.1153. This observation hints at an
unexplained universal behaviour.

The figure also shows that the speed of the peeling wave is significantly greater
than the speed of the centre of the collar ahead. As a result, the peeling wave catches
up with the collar in a finite time, triggering a sudden increase in the thickness of the
minimum between the lobe and the collar (cf. figure 8). The thickness at the trailing
edge of the collar now exceeds that at the leading edge and the collar motion reverses,
sliding rapidly back over the daughter lobe by the mechanism of § 5 leaving a new
and smaller grand-daughter lobe on the other side.
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7.3. Timescale between sliding events, the long-term evolution of lobes and energy

The timescale for the increasingly long intervals between successive sliding events is
dominated by the time taken for the peeling wave to catch up with the decelerating
collar. As argued in § 5.2, the collar velocity decreases rapidly like τ−3/2 after the
collision begins at a distance �z = O(200hm) from the next collar. If we assume that
the peeling wave must also travel this distance to catch up with the collar and that
the peeling-wave speed scales as h3

m then the interval between sliding events is O(h−2
m ).

Since hm decreases by a factor 0.115 during each event, we expect the peeling-wave
speed to decrease by a factor of about 10−3 and the interval between events to
increase by a factor of about 102. These conclusions are approximately borne out by
figure 21 and the intervals between the events in figure 6. We note that the durations
of successive sliding events are not exactly the same owing to the difference between
the amplitudes of the two half-collars at the ends of the domain.

Furthermore, the decrease of hm by a factor 10−1 in events separated by a factor 102

in time suggests that the lobe height hm(t) decreases episodically at an average rate
proportional to t−1/2 consistent with the long-dashed line in figure 8. This decrease is
more rapid than the t−1/4 prediction for a lobe next to a stationary collar (Hammond
1983). We enter a caveat however. The appearance of logarithmic terms in (7.4)
cautions that the peeling-wave speed may differ from O(h3

m) by a logarithmic factor,
in which case the scaling for the average rate of decrease of hm may also need
modification by a logarithmic factor. We do not have sufficient numerical data to
distinguish a correction of this kind.

The above scaling for hm also provides an explanation of the major variations of
the rate of dissipation with time in figure 9. The dissipation occurs predominantly in
the short regions at the edges of collars, where hzzz 
 hz. Thus Φ = O(h̄5/z̄5), where
h̄ and z̄ are the typical scales of h and z in these regions. During sliding, h̄ ∼ hm and
z̄ ∼ h1/2

m (§ 5.2) so that the episodic decrease of hm like t−1/2 gives a decrease in the
peak values of Φ like t−5/4. The similarity form h̄ ∼ t−1 and z̄ ∼ t−1/2 of (6.1) gives
Φ ∼ t−5/2 during the early stage of collisions. During the later stage of collisions, the
dominant dissipation is associated with peeling for which h̄/z̄ scales with the peeling
angle θ , where θ ∝ hm. Thus Φ ∝ h5

m is approximately constant during each peeling
event, but decreases by a factor 105 between events and like t−5/2 on a long-term
average. Finally, we note that the decrease in the energy E is dominated by the sliding
events during which an O(h5/2

m ) dissipation rate acts for an O(h−3/2
m ) time to produce

an O(hm) decrease in energy by transfer of fluid from the consumed lobe to the
sliding collar. In the numerical calculations for L =5π (figure 9) the energy decreases
from an initial value E0 = −7.9 corresponding to (3.1) to a final value E∞ = −10.4
corresponding to two half-collars and a collar with amplitudes A= 1.63, 0.81 and
1.28 respectively. The minimum-energy configuration comprising a single collar with
V =5π and E = −19.6 is never attained.

8. Collar dynamics in a larger domain
As we have seen in § 3.2, the evolution on short domains (L � 4π) is geometrically

constrained by the boundary conditions and hence is very much simpler than the
evolution on a domain of length L =5π, where there is sufficient room for the single
central collar to move. For L =5π the interaction of sliding, stopping and peeling,
analysed in § § 5–7, gives rise to the complex dynamics seen in figures 5–8. It is natural
to ask whether new phenomena appear in the dynamics when L > 6π and there is
room for two or more collars to move in the central region.
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Preliminary numerical investigations on such longer domains suggest that this is
not the case and that the dynamics can be decomposed into a sequence of the
sliding, stopping and peeling processes already discussed for a single moving collar.
In particular, it appears that generically collars slide over lobes one at a time and not
in linked trains. Two collars brought together by a collision may remain together for
a while in the almost-stationary regime of § 6, but separate as soon as one of them
starts to slide. A heuristic explanation is that when one collar starts to slide away it
leaves a thinner film behind it and the other collar will either slide more slowly on
this thinner film and thus get left behind or, more likely, be triggered into sliding in
the other direction (cf. the initial conditions in figure 12).

The number of collars, their sizes and locations, the exact sequence of collar
motions, which collars collide with each other and when, all depend strongly on the
length of the domain and the initial conditions, but the following general principles
apply even to long domains. First, a collar, once formed, retains its identity; the
number of collars never decreases in time. Second, collars move individually rather
than in trains. Third, a collar will occasionally slide over a lobe in such circumstances
as to bring two lobes together. These lobes then merge, forming a new collar whenever
their joint length exceeds 2π. Thus there is a gradual reduction in the total number
of lobes. An exhaustive investigation leading to a statistical description of the motion
of many collars is, however, beyond the scope of this paper.

9. Discussion
We have shown in this paper that the evolution of a thin annular film depends,

both qualitatively and quantitatively, on its length. For short lengths the evolution is
well-described by the theory of stationary collars and lobes considered by Hammond
(1983). But for greater lengths, collars do not remain stationary and several new
phenomena involving the sliding and collision of collars and the peeling of lobes
arise. A striking feature of the nonlinear dynamics is the wide disparity in timescales
that appear. With an initial layer thickness ĥ, the time taken for formation of the
initial collar and lobe structure is t̂ = µa4/σ ĥ3. Collars continue to have a typical
height ĥ subsequently and so adjust their shape on the timescale t̂ . Lobes, however,
episodically lose volume when a collar slides over them so that the lobe height
becomes hm(t)ĥ. The time taken for a sliding event scales as h−3/2

m t̂ 
 t̂ . The time
taken for the subsequent peeling process when the collar is almost stationary is much
longer, scaling as h−2

m t̂ .
A somewhat disappointing feature of our results is that, for the initial conditions

chosen, the first clear-cut example of peeling triggering a sliding event only occurs
after a time 106 t̂ for which the minimum film thickness has fallen to 10−5ĥ; for
experimentally plausible parameter values, this thickness is so small as probably to
be influenced by van der Waals forces or surface roughness. On the other hand, there
is a clear example of sliding over the period 102 t̂ to 105 t̂ (figure 5); thus for times as
small as 102 t̂ we predict a noticeable axial drift of collars in sufficiently long domains
and this drift should be accessible to experimental observation. We are not aware of
any such observations at the present time.

It is interesting to contrast the sliding of a collar under the action of viscous and
capillary forces alone (§ 5) with that of a droplet in equilibrium with a neighbouring
ultra-thin film in the presence of capillary forces and short-range-repulsive, long-
range-attractive intermolecular forces. Glasner & Witelski (2003) show how, in the
latter case, there is a linear pressure gradient across the film between adjacent drops,
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and that each drop moves in response to the weak fluxes driven by differing pressure
gradients in the films on either side of the drop. In this case the drop is under
edge control, with the conditions at the front and rear of the drop being of equal
importance. The energy required to sustain the motion is released by transfer of fluid
from the smaller to the larger drops. A collar also moves along a cylindrical film
under edge control (§ 5), but it quickly adopts a quasi-steady configuration in which
only conditions at the leading edge are significant. The energy required to sustain
the motion is released in this case by transfer of fluid from the film to the collar
and a reduction in film thickness. A much more profound difference occurs at long
times: if film thicknesses are bounded away from zero by intermolecular forces then
coarsening of multiple drops can occur by coalescence (Glasner & Witelski 2003);
when there is no such constraint, severe thinning of the film between neighbouring
collars provides a dissipative barrier to coalescence that inhibits long-time coarsening.

Weak gravity acting over long times can have a significant effect, so that the limit
of zero Bond number is often singular. We have recently shown (King 2005) that,
for a liquid-lined horizontal cylinder, weak gravity acts as a regular perturbation to
a collar, whereas it acts as a singular perturbation to an axially uniform film by
causing it to drain until it is pinned at contact lines at the top of the cylinder (Jensen
1997). Since collars preserve their identity, it is tempting to speculate that the picture
described in this paper is broadly preserved in the presence of weak gravity acting
normal to the cylinder axis. The situation for a vertical cylinder in the presence of
weak gravity is less obvious. Gravity causes collars to drift downwards, with larger
collars travelling faster than smaller ones, and collars can grow to finite amplitude
in finite time provided they are well separated (Kalliadasis & Chang 1994; Jensen
2000). A small gravitational term added to (2.5) is thus not just singular, it may
actually make the problem exhibit finite-time blow-up for certain initial conditions
on an infinite domain. While the film thickness is much larger than O(�ρ ga3/σ ),
the flow is dominated by the surface-tension effects described herein. Exploratory
calculations on a periodic domain show that, as the lobe thickness decreases towards
this order of magnitude, the episodic surface-tension-driven sliding gives way to a
steady gravitationally driven downward drift of collars, which leaves a uniform film
thickness equal to the critical value 1.68�ρ ga3/σ identified by Kalliadasis & Chang
(1994). It thus seems that even a very small gravitational forcing along the axis will
ultimately disrupt the long-time dynamics described here.

Though collar motion in the presence of axial forcing such as gravity, an
axial temperature gradient (Wilson 1995) or axial variation in the cylinder radius
(Lorenceau & Quéré 2004) is to be expected, it was at first surprising to find self-
sustained axial motion of a single collar under the influence of surface tension alone.
The driving mechanism, the difference between leading and trailing film thicknesses
and the consequent net transfer of fluid from the film to the collar, appears to be
robust. We speculate that this mechanism may contribute to the axial motion of
curtains and ribs in some regimes of the rotating coated cylinder experiment (Moffatt
1977). Calculations to be presented elsewhere show that this mechanism can drive
sustained lateral motion of a pendent drop over a horizontal liquid layer coating the
underside of a ceiling. Preliminary numerical calculations show that the additional
freedom allowed by lateral motion in two dimensions leads to complicated collisional
dynamics between two such translating drops.

A.A.K. was supported by the EPSRC. L. J. C. thanks the National Grid for financial
support in the form of a Royal Society Dorothy Hodgkin Fellowship.
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Appendix. Numerical discretization
Let h

j
i =h(xi, tj ) denote the discrete representation of the film thickness on

an arbitrarily spaced grid x0 = 0, . . . , xN = L at time tj . The symmetry boundary
conditions (2.6) are implemented by extending the grid by two points at either
end and assigning the appropriate mirror values. The pressure at the grid points is
approximated by

p
j
i = uih

j

i−1 + (1 − ui − vi)h
j
i + vih

j

i+1, (A 1)

where

ui =
2

(xi − xi−1)(xi+1 − xi−1)
, vi =

2

(xi+1 − xi)(xi+1 − xi−1)
. (A 2)

Equation (2.5) is then represented by

3
h

j+1
i − h

j
i

tj+1 − tj
= uici− 1

2

(
p

j+1
i−1 − p

j+1
i

)
+ vici+ 1

2

(
p

j+1
i+1 − p

j+1
i

)
, (A 3)

where 2ci± 1
2
= (hj

i )
3 +(hj

i±1)
3. Equation (A 3) is a linear pentadiagonal system of equa-

tions for the new thicknesses h
j+1
i , which gives second-order accuracy in space and

first-order in time. Time steps were chosen conservatively such that h did not change
by more than 0.2 % at any point. Spatial resolution was maintained by adding and
redistributing points to maintain a grid density proportional to 1 + h−1/2. Tests using
twice the density of grid points or half the timestep gave results that could barely
be distinguished in the plots shown, with the exception that the time of later sliding
events was changed by about 10 %, due perhaps to a slightly different early evolution.
Further indications of resolution and accuracy, especially in the thin necks, are
provided by the agreement between the time-dependent simulations and the similarity
solutions in figures 10 and 15.
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Lorenceau, E. & Quéré, D. 2004 Drops on a conical wire. J. Fluid Mech. 510, 29–45.



Collars and lobes 343

Mitlin, V. S. 1993 Dewetting of solid-surface – analogy with spinodal decomposition. J. Colloid
Interface Sci. 156, 491–497.

Moffatt, H. K. 1977 Behaviour of a viscous film on the outer surface of a rotating cylinder.
J. Méc. 16, 651–673.

Newhouse, L. A. & Pozrikidis, C. 1990 The Rayleigh-Taylor instability of a viscous-liquid layer
resting on a plane wall. J. Fluid Mech. 217, 615–638.

Newhouse, L. A. & Pozrikidis, C. 1992 The capillary instability of annular layers and liquid
threads. J. Fluid Mech. 242 193–209.

Olbricht, W. L. 1996 Pore-scale prototypes of multiphase flow in porous media. Ann. Rev. Fluid
Mech. 28 187–213.

Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod.
Phys. 69, 931–980.

Pozrikidis, C. 1990 The deformation of a liquid-drop moving normal to a plane wall. J. Fluid
Mech. 215, 331–363.
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